Part Number Hot Search : 
MA300RUI PDAA5 1N4752 ST485EX 00402 LBS24602 FRA1602G 97A37
Product Description
Full Text Search
 

To Download NTD4960N-35G Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? semiconductor components industries, llc, 2009 august, 2009 ? rev. p1 1 publication order number: ntd4960n/d ntd4960n advance information power mosfet 30 v, 55 a, single n ? channel, dpak/ipak features ? low r ds(on) to minimize conduction losses ? low capacitance to minimize driver losses ? optimized gate charge to minimize switching losses ? three package variations for design flexibility ? these devices are pb ? free, halogen free/bfr free and are rohs compliant applications ? cpu power delivery ? dc ? dc converters ? recommended for high side (control) maximum ratings (t j = 25 c unless otherwise stated) parameter symbol value unit drain ? to ? source voltage v dss 30 v gate ? to ? source voltage v gs 20 v continuous drain current r  ja (note 1) steady state t a = 25 c i d 11.1 a t a = 85 c 8.0 power dissipation r  ja (note 1) t a = 25 c p d 1.68 w continuous drain current r  ja (note 2) t a = 25 c id 8.9 a t a = 85 c 6.4 power dissipation r  ja (note 2) t a = 25 c p d 1.07 w continuous drain current r  jc (note 1) t c = 25 c i d 55 a t c = 85 c 40 power dissipation r  jc (note 1) t c = 25 c p d 35.71 w pulsed drain current t p =10  s t a = 25 c i dm 137 a current limited by package t a = 25 c i dmaxpkg 45 a operating junction and storage temperature t j , t stg ? 55 to +175 c source current (body diode) i s 29.7 a drain to source dv/dt dv/dt 6 v/ns single pulse drain ? to ? source avalanche energy (t j = 25 c, v dd = 50 v, v gs = 10 v, i l = 13 a pk , l = 1.0 mh, r g = 25  eas 84.5 mj lead temperature for soldering purposes (1/8? from case for 10 s) t l 260 c stresses exceeding maximum ratings may damage the device. maximum ratings are stress ratings only. functional operation above the recommended operating conditions is not implied. extended exposure to stresses above the recommended operating conditions may affect device reliability. this document contains information on a new product. specifications and information herein are subject to change without notice. marking diagrams & pin assignments http://onsemi.com v (br)dss r ds(on) max i d max 30 v 8.0 m  @ 10 v 55 a 12.7 m  @ 4.5 v g s n ? channel mosfet d see detailed ordering and shipping information in the package dimensions section on p age 3 of this data sheet. ordering information yww 49 60ng 1 gate 2 drain 3 source 4 drain 4 drain 2 drain 1 gate 3 source 4 drain 2 drain 1 gate 3 source yww 49 60ng yww 49 60ng y = year ww = work week 4960n = device code g = pb ? free package case 369aa dpak (bent lead) style 2 case 369d ipak (straight lead dpak) 1 2 3 4 1 2 3 4 case 369ac 3 ipak (straight lead) 1 2 3 4
ntd4960n http://onsemi.com 2 thermal resistance maximum ratings parameter symbol value unit junction ? to ? case (drain) r  jc 3 c/w junction ? to ? tab (drain) r  jc ? tab 3.5 junction ? to ? ambient ? steady state (note 1) r  ja 74.5 junction ? to ? ambient ? steady state (note 2) r  ja 116.5 1. surface ? mounted on fr4 board using 1 sq ? in pad, 1 oz cu. 2. surface ? mounted on fr4 board using the minimum recommended pad size. electrical characteristics (t j = 25 c unless otherwise specified) parameter symbol test condition min typ max unit off characteristics drain ? to ? source breakdown voltage v (br)dss v gs = 0 v, i d = 250  a 30 v drain ? to ? source breakdown voltage temperature coefficient v (br)dss / t j 25 mv/ c zero gate voltage drain current i dss v gs = 0 v, v ds = 24 v t j = 25 c 1.0  a t j = 125 c 10 gate ? to ? source leakage current i gss v ds = 0 v, v gs = 20 v 100 na on characteristics (note 3) gate threshold voltage v gs(th) v gs = v ds , i d = 250  a 1.5 2.5 v negative threshold temperature coefficient v gs(th) /t j 5.0 mv/ c drain ? to ? source on resistance r ds(on) v gs = 10 v i d = 30 a 6.1 8.0 m  i d = 15 a 6.1 v gs = 4.5 v i d = 30 a 10 12.7 m  i d = 15 a 10 forward transconductance g fs v ds = 1.5 v, i d = 15 a 48 s charges, capacitances and gate resistance input capacitance c iss v gs = 0 v, f = 1.0 mhz, v ds = 15 v 1300 pf output capacitance c oss 342 reverse transfer capacitance c rss 169 total gate charge q g(tot) v gs = 4.5 v, v ds = 15 v, i d = 30 a 11 nc threshold gate charge q g(th) 1.2 gate ? to ? source charge q gs 4.0 gate ? to ? drain charge q gd 4.7 total gate charge q g(tot) v gs = 10 v, v ds = 15 v, i d = 30 a 22 nc switching characteristics (note 4) turn ? on delay time t d(on) v gs = 4.5 v, v ds = 15 v, i d = 15 a, r g = 3.0  12 ns rise time t r 20 turn ? off delay time t d(off) 15 fall time t f 4.0 3. pulse test: pulse width  300  s, duty cycle  2%. 4. switching characteristics are independent of operating junction temperatures. 5. assume terminal length of 110 mils.
ntd4960n http://onsemi.com 3 electrical characteristics (t j = 25 c unless otherwise specified) parameter unit max typ min test condition symbol switching characteristics (note 4) turn ? on delay time t d(on) v gs = 11.5 v, v ds = 15 v, i d = 15 a, r g = 3.0  7.0 ns rise time t r 17 turn ? off delay time t d(off) 22 fall time t f 3.0 drain ? source diode characteristics forward diode voltage v sd v gs = 0 v, i s = 30 a t j = 25 c 0.9 1.2 v t j = 125 c 0.76 reverse recovery time t rr v gs = 0 v, dis/dt = 100 a/  s, i s = 30 a 13.0 ns charge time t a 7.0 discharge time t b 6.0 reverse recovery charge q rr 4.0 nc package parasitic values source inductance (note 5) l s t a = 25 c 2.49 nh drain inductance, dpak l d 0.0164 drain inductance, ipak (note 5) l d 1.88 gate inductance (note 5) l g 3.46 gate resistance r g 1.0  3. pulse test: pulse width  300  s, duty cycle  2%. 4. switching characteristics are independent of operating junction temperatures. 5. assume terminal length of 110 mils. ordering information device package shipping ? ntd4960nt4g dpak (pb ? free) 2500 / tape & reel ntd4960n ? 1g ipak (pb ? free) 75 units / rail ntd4960n ? 35g ipak trimmed lead (pb ? free) 75 units / rail ?for information on tape and reel specifications, including part orientation and tape sizes, please refer to our tape and reel packaging specifications brochure, brd8011/d.
ntd4960n http://onsemi.com 4 typical performance curves 10v v ds , drain ? to ? source voltage (volts) i d , drain current (amps) v gs , gate ? to ? source voltage (volts) figure 1. on ? region characteristics figure 2. transfer characteristics i d , drain current (amps) figure 3. on ? resistance vs. gate ? to ? source voltage v gs , gate ? to ? source voltage (volts) figure 4. on ? resistance vs. drain current and gate voltage i d , drain current (amps) r ds(on) , drain ? to ? source resistance (  ) r ds(on) , drain ? to ? source resistance (  ) figure 5. on ? resistance variation with temperature t j , junction temperature ( c) figure 6. drain ? to ? source leakage current vs. drain voltage v ds , drain ? to ? source voltage (volts) r ds(on) , drain ? to ? source resistance (normalized) i dss , leakage (na) v ds 10 v t j = 25 c t j = ? 55 c t j = 125 c v gs = 4.5 v v gs = 0 v i d = 30 a v gs = 10 v t j = 150 c t j = 125 c t j = 25 c 3.8 v 3.0 v 4 v 3.6 v 2.8 v 3.2 v 3.4 v i d = 30 a t j = 25 c v gs = 10 v t j = 25 c 0 10 20 30 40 50 60 012345 0 10 20 30 40 50 60 02345 0 0.012 0.020 0.032 0.040 246810 0.011 0.005 0.008 20 40 60 10 30 50 0.012 0.006 0.004 0.007 0.6 0.8 1.0 1.2 1.4 ? 50 0 50 100 150 1.6 1.8 ? 25 25 75 125 175 1000 214161820 10000 0.004 0.016 0.028 0.036 357911 100 10 0.010 0.009 1 0.024 0.008 4681012
ntd4960n http://onsemi.com 5 typical performance curves c rss 01015 drain ? to ? source voltage (volts) c, capacitance (pf) figure 7. capacitance variation 5 v gs = 0 v t j = 25 c c oss c iss v gs figure 8. gate ? to ? source and drain ? to ? source voltage vs. total charge v gs , gate ? to ? source voltage (volts) q g , total gate charge (nc) i d = 30 a t j = 25 c q 2 q 1 q t v sd , source ? to ? drain voltage (volts) i s , source current (amps) figure 9. resistive switching time variation vs. gate resistance r g , gate resistance (ohms) t, time (ns) v gs = 0 v figure 10. diode forward voltage vs. current t r t d(off) t d(on) t f v dd = 15 v i d = 15 a v gs = 11.5 v t j = 25 c figure 11. maximum rated forward biased safe operating area v ds , drain ? to ? source voltage (volts) i d , drain current (amps) r ds(on) limit thermal limit package limit v gs = 20 v single pulse t c = 25 c 1 ms 100  s 10 ms dc 10  s 20 t j , junction temperature ( c) i d = 13 a figure 12. maximum avalanche energy vs. starting junction temperature eas, single pulse drain ? to ? source avalanche energy (mj) 0 500 1000 1500 2000 015 0 2 4 6 8 10 10 20 525 1 10 100 1 10 100 1000 0.4 0.7 0 10 20 30 5 15 25 0.6 0.8 0.1 10 100 1 10 100 1000 0.1 1 25 125 175 40 60 80 20 0 75 100 100 150 50 25 1.0 0.5 0.9 30 50 70 10 90
ntd4960n http://onsemi.com 6 package dimensions style 2: pin 1. gate 2. drain 3. source 4. drain dpak (single gauge) case 369aa ? 01 issue a d a b r v s f l 2 pl m 0.13 (0.005) t e c u j ? t ? seating plane z dim min max min max millimeters inches a 0.235 0.245 5.97 6.22 b 0.250 0.265 6.35 6.73 c 0.086 0.094 2.19 2.38 d 0.025 0.035 0.63 0.89 e 0.018 0.024 0.46 0.61 f 0.030 0.045 0.77 1.14 j 0.018 0.023 0.46 0.58 l 0.090 bsc 2.29 bsc r 0.180 0.215 4.57 5.45 s 0.024 0.040 0.60 1.01 u 0.020 ??? 0.51 ??? v 0.035 0.050 0.89 1.27 z 0.155 ??? 3.93 ??? notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. 123 4 h 0.386 0.410 9.80 10.40 h 5.80 0.228 2.58 0.101 1.6 0.063 6.20 0.244 3.0 0.118 6.172 0.243  mm inches  scale 3:1 *for additional information on our pb ? free strategy and soldering details, please download the on semiconductor soldering and mounting techniques reference manual, solderrm/d. soldering footprint*
ntd4960n http://onsemi.com 7 package dimensions 3 ipak, straight lead case 369ac ? 01 issue o d a k b r v f g 3 pl e c j h dim min max min max millimeters inches a 0.235 0.245 5.97 6.22 b 0.250 0.265 6.35 6.73 c 0.086 0.094 2.19 2.38 d 0.027 0.035 0.69 0.88 e 0.018 0.023 0.46 0.58 f 0.037 0.043 0.94 1.09 g 0.090 bsc 2.29 bsc h 0.034 0.040 0.87 1.01 j 0.018 0.023 0.46 0.58 k 0.134 0.142 3.40 3.60 r 0.180 0.215 4.57 5.46 v 0.035 0.050 0.89 1.27 w 0.000 0.010 0.000 0.25 notes: 1.. dimensioning and tolerancing per ansi y14.5m, 1982. 2.. controlling dimension: inch. 3. seating plane is on top of dambar position. 4. dimension a does not include dambar position or mold gate. w seating plane 0.13 (0.005) w style 2: pin 1. gate 2. drain 3. source 4. drain 123 4 v s a k ? t ? seating plane r b f g d 3 pl m 0.13 (0.005) t c e j h dim min max min max millimeters inches a 0.235 0.245 5.97 6.35 b 0.250 0.265 6.35 6.73 c 0.086 0.094 2.19 2.38 d 0.027 0.035 0.69 0.88 e 0.018 0.023 0.46 0.58 f 0.037 0.045 0.94 1.14 g 0.090 bsc 2.29 bsc h 0.034 0.040 0.87 1.01 j 0.018 0.023 0.46 0.58 k 0.350 0.380 8.89 9.65 r 0.180 0.215 4.45 5.45 s 0.025 0.040 0.63 1.01 v 0.035 0.050 0.89 1.27 notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. z z 0.155 ??? 3.93 ??? ipak (straight lead dpak) case 369d ? 01 issue b on semiconductor and are registered trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to mak e changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for an y particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including wi thout limitation special, consequential or incidental damages. ?typical? parameters which may be provided in scillc data sheets and/or specifications can and do vary in different application s and actual performance may vary over time. all operating parameters, including ?typicals? must be validated for each customer application by customer?s technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indemnify and hold scillc and its of ficers, employees, subsidiaries, af filiates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, direct ly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employer. this literature is subject to all applicable copyright laws and is not for resale in any manner. publication ordering information n. american technical support : 800 ? 282 ? 9855 toll free usa/canada europe, middle east and africa technical support: phone: 421 33 790 2910 japan customer focus center phone: 81 ? 3 ? 5773 ? 3850 ntd4960n/d literature fulfillment : literature distribution center for on semiconductor p.o. box 5163, denver, colorado 80217 usa phone : 303 ? 675 ? 2175 or 800 ? 344 ? 3860 toll free usa/canada fax : 303 ? 675 ? 2176 or 800 ? 344 ? 3867 toll free usa/canada email : orderlit@onsemi.com on semiconductor website : www.onsemi.com order literature : http://www.onsemi.com/orderlit for additional information, please contact your local sales representative


▲Up To Search▲   

 
Price & Availability of NTD4960N-35G

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X